

Optimising management with combotherapy

Simon Travis DPhil FRCP

Translational Gastroenterology Unit and Linacre College, Oxford

Combotherapy

• Is it a double buggy?

• Or even a pushmepullu?

Combotherapy

 Like any marriage, some are made in heaven

and some...

THERE ARE KNOWN KNOWNS
THERE ARE THINGS THAT WE KNOW THAT WE KNOW, THERE ARE

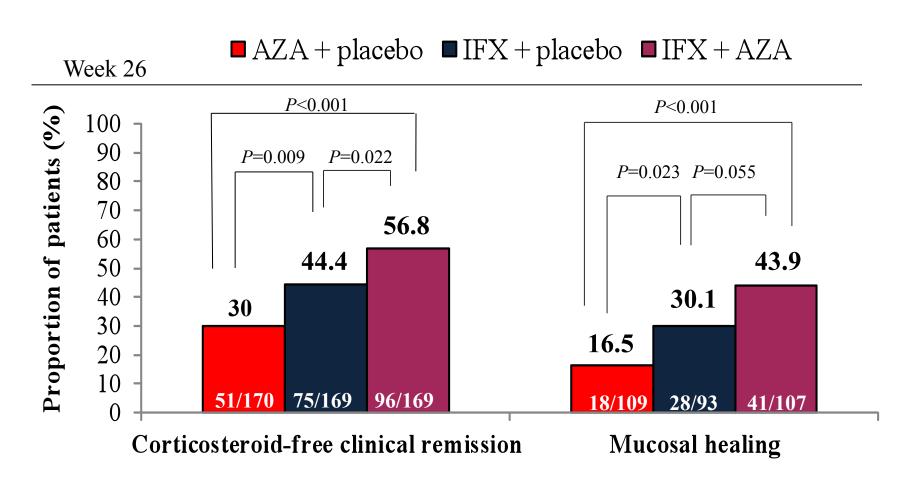
KNOWN UNKNOWNS

Donald Rumsfeld

THAT IS TO SAY, THERE ARE
THINGS THAT WE NOW KNOW WE DON'T KNOW

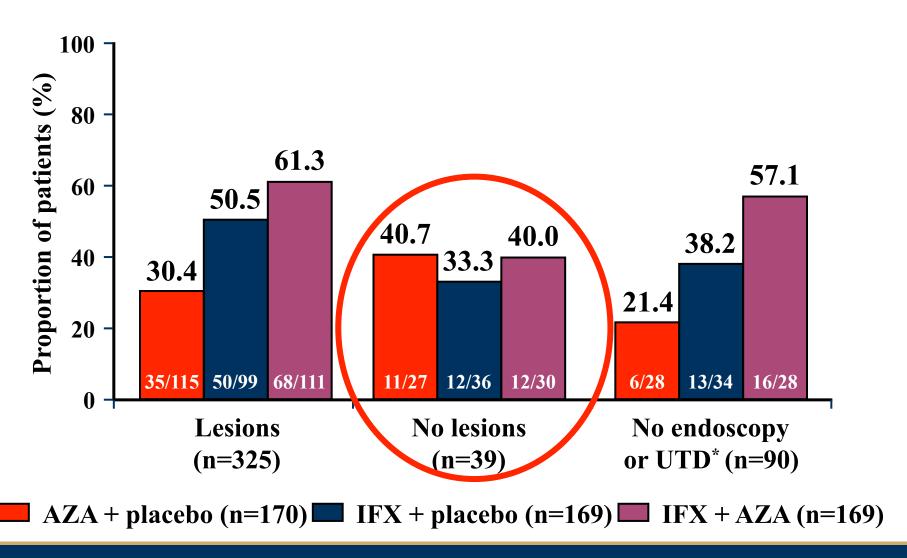
BUT THERE ARE ALSO

UNKNOWN UNKNOWNS

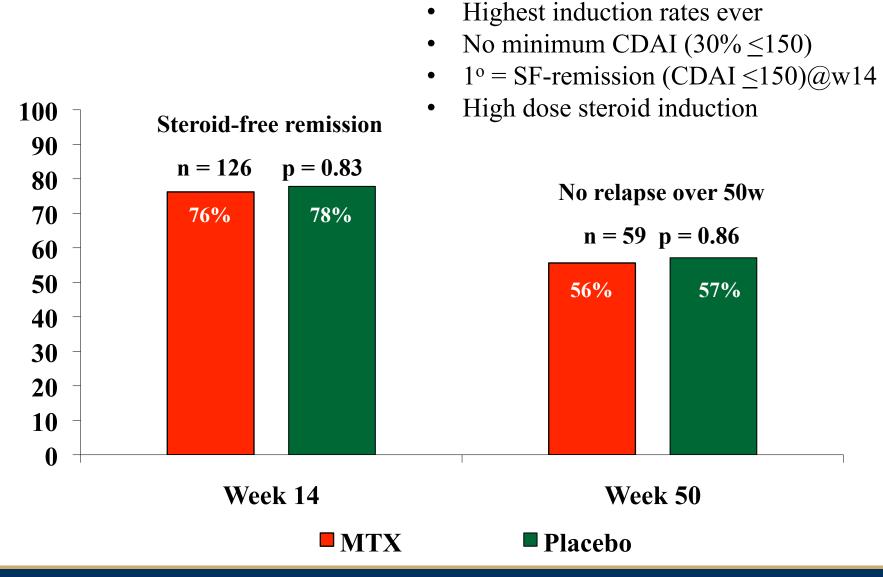

THERE ARE THINGS

WE DO NOT KNOW WE DON'T KNOW

AND EACH YEAR WE DISCOVER A FEW MORE OF THOSE


UNKNOWN UNKNOWNS

SONIC: AZA vs IFX vs AZA+IFX for early CD



Crohn's disease naïve to azathioprine and anti-TNF

Absence of active disease: steroid-free remission at wk 26 by baseline endoscopy (SONIC)

COMMIT: IFX +/- MTX: treatment success

Comparative effectiveness combo vs mono RCTs in CD

Systematic review: monotherapy with Gut ePub 26 June 2014 antitumour necrosis factor α agents versus combination therapy with an immunosuppressive for IBD

COMMIT¹⁵

Parambir S Dulai, 1 Corey A Siegel, 1 J William J Sandborn, Laurent Peyrin-

SONIC vs COMMIT for Crohn's disease comparing mono- vs combo-

Jean-Frederic Colombel, ²	JONIC		CONNINT		
-Biroulet ⁴	IFX mono	IFX combo	IFX mono	IFX combo	
Patient characteristics					
Participants, n	169	169	63	63	
Treatment regimen	IFX+PBO	IFX+AZA	IFX+PBO	IFX+MTX	
Male, %	50	52	59	54	
Mean age, years	35	34	39	40	
Disease characteristics					
Mean duration, years	2.2	2.2	9.6	10.9	
Extensive*, %	39	44	56	60	
Prior surgery, %	28	26	46	57	
Prior IS therapy, %	0	0	25	24	
Baseline steroids, %	31	28	100	100	
Clinical disease activity scoret, mean	285	290	208	208	
Clinically active disease at baseline‡, %	100	100	73	68	
Endoscopic lesions at baseline, %	57	66	n/a	n/a	
CRP, mean	1.1	1.0	6.0	3.0§	
Outcomes					
Primary CFREM¶, %	44	57§	78	76	
Week 50 CFREM, %	35	46§	57	56	
Mucosal healing, %	30	44 ⁺	n/a	n/a	
Antidrug antibody, %	14.6	0.9	20.4	4.0	
IFX concentration, mean μg/mL	1.6	3.5§	3.8	6.4	
Serious infection, %	4.9	3.9	n/a	n/a	

Crohn's disease

SONIC14

Meta-analysis 2013

Impact of combo in RCTs

- Overall 'no'
- IFX 'yes' for combo
- ADA/CZP 'no'
- Abstract only Jones et al Gastroenterology 2013:144: S179

Impact of Concomitant Immunomodulator Treatment on Efficacy and Safety of Anti-TNF Therapy in Crohn's Disease: A Meta-Analysis of Placebo Controlled Trials With Individual Patient-Level Data

Jennifer Jones, Gilaad G. Kaplan, Laurent Peyrin-Biroulet, Leonard Baidoo, Shane Devlin, Gil Y. Melmed, Divine Tanyingoh, Laura H. Raffals, Peter M. Irving, Patricia L. Kozuch, Miles Sparrow, Fernando S. Velayos, Brian Bressler, Adam S. Cheifetz, Jean-Frederic Colombel, Corey A. Siegel

A) Overall, 6 month remisssion

	Yes	IM	No	IM		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
ACCENT1	28	53	61	150	14.8%	1.63 [0.87, 3.07]	
ACCENT2	24	28	43	58	4.0%	2.09 [0.62, 7.02]	
CHARM	64	156	77	173	30.7%	0.87 [0.56, 1.34]	— —
CLASSIC2	7	9	21	28	1.8%	1.17 [0.19, 6.98]	
PRECISE1	51	126	88	205	29.0%	0.90 [0.58, 1.42]	— •
PRECISE2	61	87	90	128	16.6%	0.99 [0.55, 1.80]	
RUTGEERTS	12	18	7	15	3.0%	2.29 [0.56, 9.37]	
Total (95% CI)		478		757	100.0%	1.05 [0.83, 1.34]	(👃)
Total events	247		387				
Heterogeneity: Taur	= 0.00; Ch	$i^{i} = 5.5$	1, df = 6.0	P = 0.48	F = 0%		0.2 0.5 2 5
Test for overall effect	t: Z = 0.45	P = 0.6	56)				Favours No IM Favours Yes I

B) Adalimumab, 6 month remission

	Yes	IM	No	IM		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
CHARM	64	156	77	173	94.4%	0.87 [0.56, 1.34]	
CLASSIC2	7	9	21	28	5.6%	1.17 [0.19, 6.98]	
Total (95% CI)		165		201	100.0%	0.88 [0.58, 1.35]	
Total events	71		98				
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.10$, $df = 1$ ($P = 0.75$); $f' = 0\%$ Test for overall effect: $Z = 0.58$ ($P = 0.56$)							0.2 0.5 2 5
lest for overall effect	t: Z = 0.58	(P=0.	56)				Favours No IM Favours Yes I

Infliximab, 6 month remission

	Yes	IM	No	IM		Odds Ratio	Odds Ratilo
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
ACCENT1	28	53	61	150	68.0%	1.63 [0.87, 3.07]	-
ACCENT2	24	28	43	58	18.4%	2.09 [0.62, 7.02]	
RUTGEERTS	12	18	7	15	13.6%	2.29 [0.56, 9.37]	
Total (95% CI)		99		223	100.0%	1.79 [1.06, 3.01]	
Total events	64		111				
Heterogeneity: Tau ¹ = 0.00; Chi ¹ = 0.26, df = 2 (P = 0.88); I ¹ = 0%							0,2 0,5 2 5
Test for overall effect: Z = 2.20 (P = 0.03)							Favours No IM Favours Yes I

D) Certolizumab, 6 month remission

	Yes	IM	No	IM		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
PRECISE1	51	126	88	205	63,6%	0.90 [0.58, 1.42]	-
PRECISE2	61	87	90	128	36.4%	0.99 [0.55, 1.80]	
Total (95% CI)		213		333	100.0%	0.93 [0.65, 1.34]	(→)
Total events	112		178				
Heterogeneity: Tau ² Test for overall effect			0.2 0.5 1 2 5 Fewnurs No IM Fewnurs Yes IM				

Comparative effectiveness combo vs mono RCTs in UC

Systematic review: monotherapy with antitumour necrosis factor α agents versus combination therapy with an immunosuppressive for IBD

Parambir S Dulai, ¹ Corey A Siegel, ¹ Jean-Frederic Colombel, ² William J Sandborn, ³ Laurent Peyrin-Biroulet ⁴

Gut ePub 26 June 2014

Effectiveness in UC-SUCCESS

comparing mono- vs combo-

	UC-SUCCESS 16	
	IFX mono	IFX combo
Patient characteristics		
Participants, n	78	80
Treatment regimen	IFX+PBO	IFX+AZA
Male, %	54	60
Mean age, years	39	38
Disease characteristics		
Mean duration, years	6.3	5.2
Extensive*, %	19	34
Prior surgery, %	n/a	n/a
Prior IS therapy, %	10	10
Baseline steroids, %	40	48
Clinical disease activity scoret, mean	6.0	6.3
Clinically active disease at baseline‡, %	100	100
Endoscopic lesions at baseline, %	99	100
CRP, mean	n/a	n/a
Outcomes		
Primary CFREM¶, %	22	40§
Week 50 CFREM, %	n/a	n/a
Mucosal healing, %	55	63**
Antidrug antibody, %	19	3
IFX concentration, mean μg/mL	n/a	n/a
Serious infection, %	0.01	0

Other trials, clinical remission combo vs mono in CD

Systematic review: monotherapy with Gut ePub 26 June 2014 antitumour necrosis factor α agents versus combination therapy with an immunosuppressive for IBD

Parambir S Dulai, ¹ Corey A Siegel, ¹ Jean-Frederic Colombel, ² William J Sandborn, Laurent Peyrin-Biroulet4

Clinical remission for Crohn's disease with mono- vs combo- cohorts

ACCENT: IFX PRFCISF: C7P CLASSIC: ADA

	Clinical remissi	ion
ACCENT I IFX	Mono (%)	Combo (%)
Induction+Placebo	10	21
Induction+Maintenance	32	37
ACCENT II*		
IFX	38	32
PRECISE 2†		
CTZ		
Induction+Placebo	39	33
Induction+Maintenance	64	61
CLASSIC II		
ADA	45	48

Other trials, clinical remission combo vs mono in UC

Systematic review: monotherapy with Gut ePub 26 June 2014 antitumour necrosis factor α agents versus combination therapy with an immunosuppressive for IBD

Parambir S Dulai, ¹ Corey A Siegel, ¹ Jean-Frederic Colombel, ²

William J Sandborn, Laurent Peyrin-Biroulet4

Clinical remission for UC

with mono- vs combocohorts

ACT 1/2: IFX

PURSUIT: GOL

ULTRA: ADA unavailable

	Clinical remission				
Agent	Mono (%)	Combo (%)			
ACT 1					
IFX	36	34			
ACT 2					
IFX	27	36			
PURSUIT*					
Golimumab					
Induction+Placebo	34	26			
Induction+Maintenance	50	50			

THERE ARE KNOWN KNOWNS
THERE ARE THINGS THAT WE KNOW THAT WE KNOW, THERE ARE

KNOWN UNKNOWNS

Donald Rumsfeld

THAT IS TO SAY, THERE ARE
THINGS THAT WE NOW KNOW WE DON'T KNOW

BUT THERE ARE ALSO

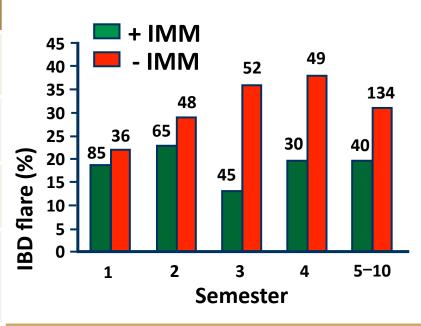
UNKNOWN UNKNOWNS

THERE ARE THINGS

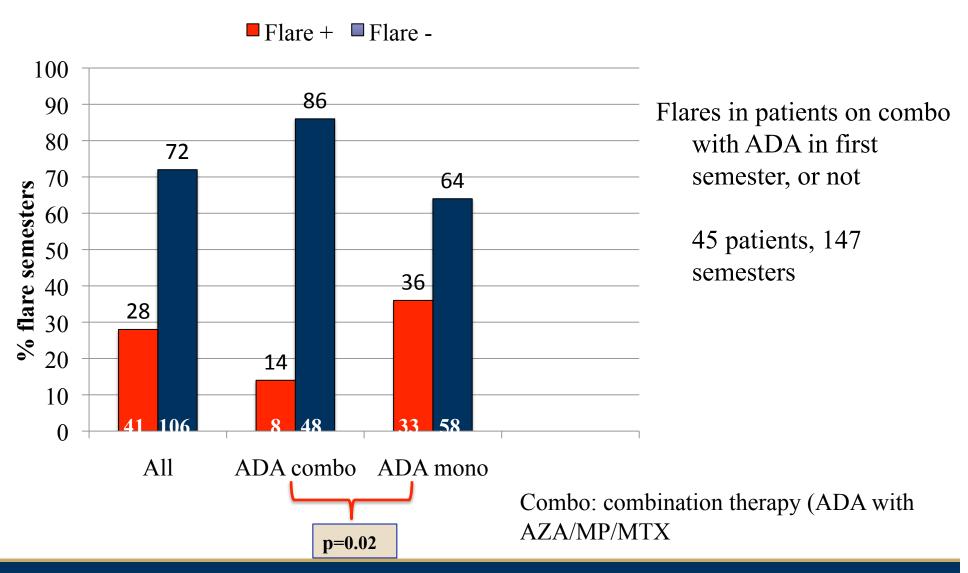
WE DO NOT KNOW WE DON'T KNOW

AND EACH YEAR WE DISCOVER A FEW MORE OF THOSE

UNKNOWN UNKNOWNS

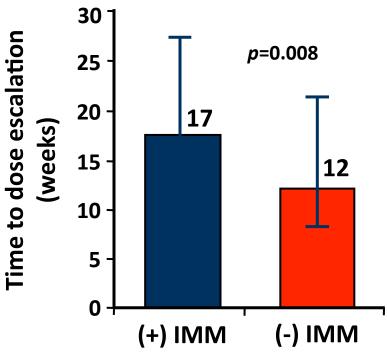

Known unknowns

- Should you allow IMDs to take effect before starting biologicals?
- If you do start mono- and lose response, does combo- then help?
- Is the risk of infection really increased by combotherapy?
- What is the real risk of malignancy on mono- vs combotherapy?
- Can you safely re-start combo- after serious infection or malignancy?
- Do risks resolve when combotherapy stops?
- Is it best to stop combo- after 1-2 years, or best to continue?
- Can you stop biologics and maintain with IMDs in some patients?
- What about combo- with biosimilars, golimumab, or vedo?


Combo in real life: IFX

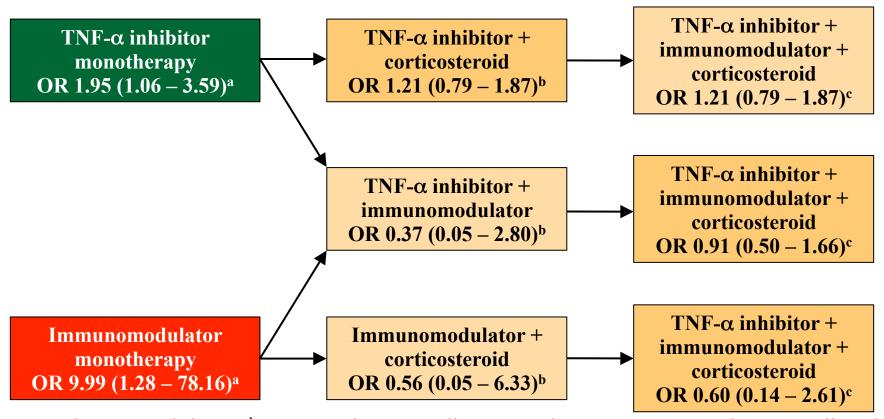
- 121 patients on IFX for at least 1 year with at least 6 months' combo with IMD
- Outcomes assessed in 6 month semesters (excluding first 6 months)
- No difference if azathioprine-naïve or refractory at start of IFX
- 62 patients had colonoscopy during study
 - Mucosal healing (no ulcers): combo 75% vs mono 50% (OR 0.33, CI 0.12-0.93; p=0.03)

	+/-		
	Yes (n=265)	No (n=319)	<i>p</i> -value
IBD flare (%)	51 (19%)	102 (32%)	0.003
Switch to ADA (%)	3 (1.1)	17 (5.3)	0.003
CRP (mean±SE)	8.7±1.1	10.9±0.8	0.001
IFX g/kg/semester (mean±SE)	16.0±0.3	17.2±0.3	<0.001



Effect of early combo for ADA

Mono- vs combo for ADA?


- Concomitant ADA and IMD at baseline did not affect treatment outcome, p=0.45
- However, time to dose escalation was longer with ADA combo

Bars represent 95% confidence intervals

Serious infections, anti-TNF & IMDs: mono- vs combo

Incremental odds of serious infections with pharmacotherapy in IBD

^aCompared to control drugs; ^bCompared to preceding monotherapy; ^cCompared to preceding dual combination therapy

Serious Infections, anti-TNF & IMDs: Mono- vs Combo

Risk of infections with drug therapies in IBD in FDA adverse event reporting system (Jan 2003 – June 2011)

	Infections ^a		Control Reactions ^a	OR	Lower CI	Upper Cl	<i>P</i> Value ^b
TNF a blocker	All infections	3724	2 53	2.17	1.32	3.57	0.003
monotherapy	Serious infections ^c	1596	112	1.95	1.06	3.59	0.046
Immunomodulators	All infections	97	2	7.14	1.62	31.41	0.002
monotherapy	Serious infections	73	1	9.99	1.25	78.16	0.009
TNF-a blockers + corticosteroids	All infections Serious infections	717 466	55 27	1.92 2.36	1.10 1.18	3.34 4.75	0.03 0.019
TNF-a blockers +	All infections	992	47	3.11	1.77	5.46	<0.001
immunomodulators	Serious infections	625	23	3.72	1.82	7.59	<0.001
Immunomodulators +	All infections	101	3	4.96	1.43	17.23	0.006
corticosteroids	Serious infections	82	2	5.61	1.23	25.60	0.014
TNF-a blockers + immunomodulators + corticosteroids	All infections Serious infections	667 517	27 21	3.64 3.37	1.96 1.63	6.74 6.96	<0.001 0.002
Control drugs	All infections Serious infections	129 95	19 13				

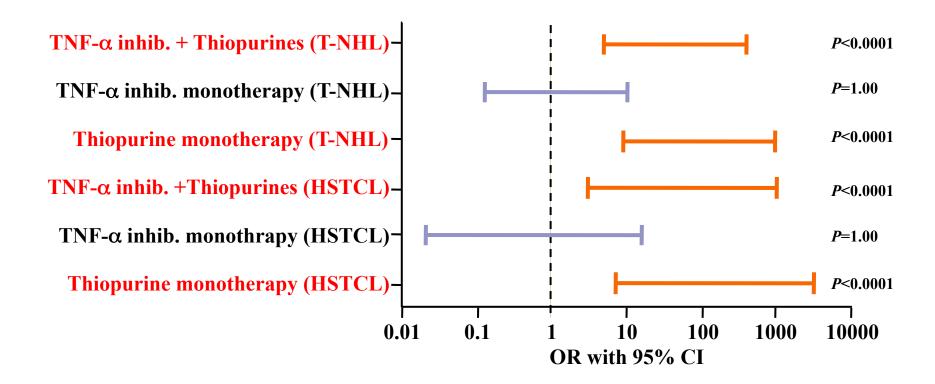
^aNumber of reports; ^bFisher's exact test; ^cInfections resulting in hospitalizations and/or death

Either serious infections or malignancy: combo vs mono

DESIGN

- Meta-analysis: Medline, Embase and Web of Science (1980 – 2008)
- 11 RCTs with identified pts with luminal and/or fistulizing CD

OBJECTIVE


- Compared safety and efficacy of combo- vs anti-TNF mono in RCT
- Serious adverse events (SAE) = serious infection, malignancy, or death

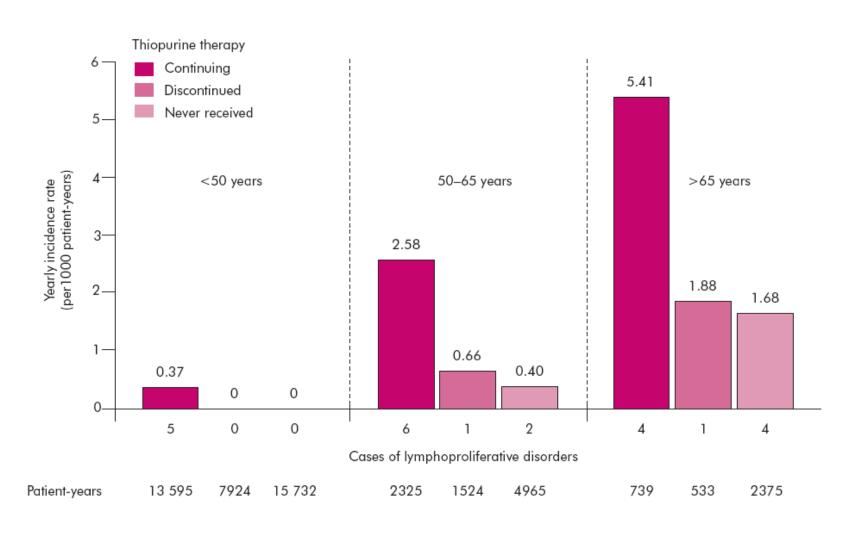
OUTCOMES

- Overall, combo was NOT associated with increased SAE vs anti-TNF mono
- OR 1.11 (95%CI 0.56–2.20)
- Included anti-TNF agents:
 - adalimumab
 - infliximab
 - Certolizumab pegol

T-Cell Non-Hodgkin's Lymphoma: REFURBISH

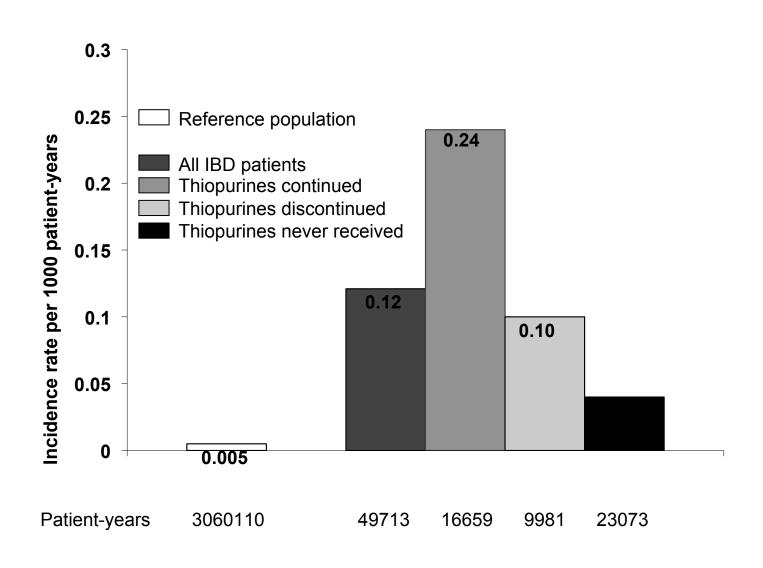
Odds ratios (with 95% CI) of T-cell non-Hodgkin's lymphoma (T-NHL) or Hepatosplenic T-cell lymphoma for TNF- α inhibitors alone, thiopurines alone, or in combination with each other vs other therapies for patients with IBD

Risk synopsis


- Thiopurines are the main culprit
- Thiopurine monotherapy increases the risk of
 - Serious infections by ten-fold (OR 9.99, 95 %CI 1.25 78.16)
 - Lymphoma by around 3-fold
- Anti-TNF monotherapy increases the risk of
 - Serious infections doubles (OR 1.95; 95% CI 1.06-3.59)
 - Lymphoma NOT significantly
- Combotherapy appears NOT to increase the overall risk
 - OR 1.11 (95%CI 0.56–2.20)
 - But serious infections treble+ (OR 3.72; 95% CI 1.82-7.59)
 - Lymphoma similar to thiopurine monotherapy

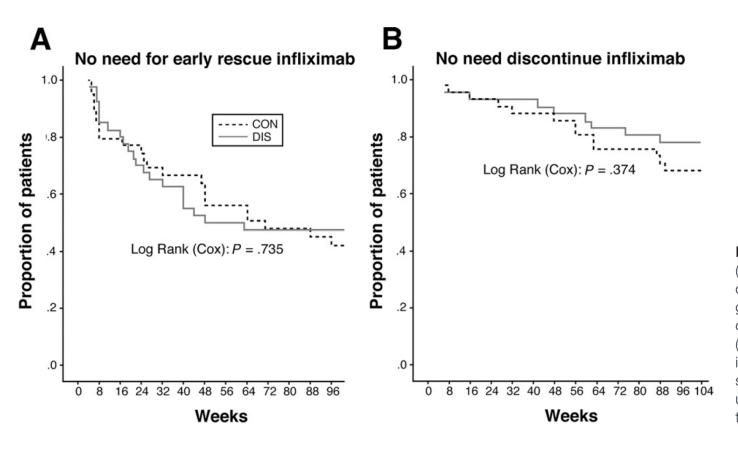
Known unknowns

- Should you allow IMDs to take effect before starting biologicals?
- If you do start mono- and lose response, does combo- then help?
- Is the risk of infection really increased by combotherapy?
- What is the real risk of malignancy on mono- vs combotherapy?
- Can you safely re-start combo- after serious infection or malignancy?
- Do risks resolve when combotherapy stops?
- Is it best to stop combo- after 1-2 years, or best to continue?
- Can you stop biologics and maintain with IMDs in some patients?
- What about combo- with golimumab, biosimilars, or vedo?



Exposure to thiopurines and lymphomas in IBD

Primary intestinal lymphomas and thiopurines



Known unknowns

- Should you allow IMDs to take effect before starting biologicals?
- If you do start mono- and lose response, does combo- then help?
- Is the risk of infection really increased by combotherapy?
- What is the real risk of malignancy on mono- vs combotherapy?
- Can you safely re-start combo- after serious infection or malignancy?
- Do risks resolve when combotherapy stops?
- Is it best to stop combo- after 1-2 years, or best to continue?
- Can you stop biologics and maintain with IMDs in some patients?
- What about combo- with golimumab, biosimilars, or vedo?

Withdrawal of immunosuppression in CD with scheduled IFX maintenance

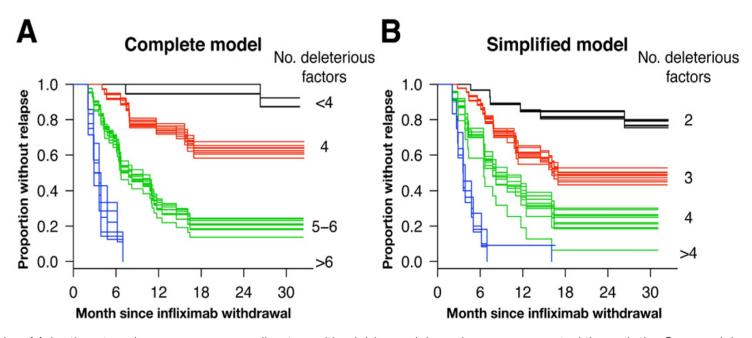
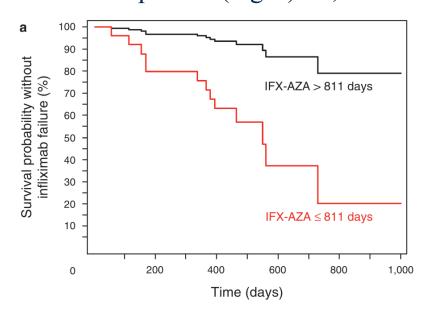
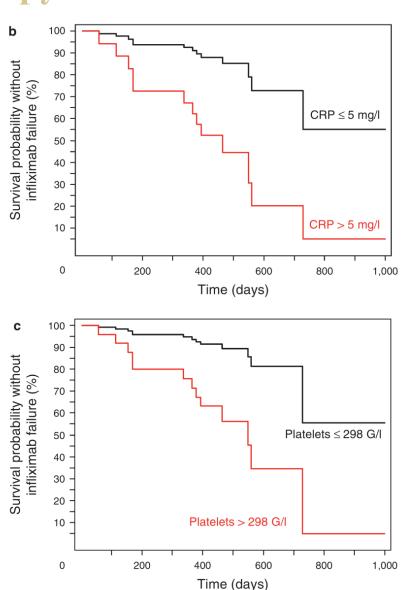

OUTCOMES

Figure 2. Life table analysis (Kaplan–Meier) of the patient outcomes. (A) Analysis in both groups of the need for early rescue IFX or stopping IFX therapy (primary end point). (B) Analysis in both groups of the need to stop further IFX therapy. P values are listed for the log-rank test only.

Maintenance of remission in CD on IMD after IFX stopped (STORI)

OUTCOMES




Figure 3. Kaplan–Meier time-to-relapse curves according to multivariable models and scores generated through the Cox model using the multiple imputation method. (A) According to a complete model: with this model (Table 2), the subgroup of patients presenting 3 deleterious prognostic factors or less corresponded to zero to one relapse over 1 year among 22 to 25 patients, depending on imputations. (B) According to a simplified model without infliximab trough levels and endoscopic data: with this model (Table 2), the subgroup presenting 2 deleterious prognostic factors or less corresponded to 4 relapses over 1 year among 32 to 35 patients, depending on imputations.

Predictors of IFX failure after AZA withdrawal in CD on comboherapy

OUTCOMES

• Survival analysis using Cox proportional-hazards regression with respect to the 3 independent predictive factors for infliximab failure: (A) "infliximab-azathioprine exposure duration until azathioprine withdrawal (days) ≤811"; (B) "C-reactive protein (mg/L) >5; and

Predictors of relapse in CD in remission after 1 yr of biological therapy (RASH study)

OUTCOMES

• Multivariate logistic regression: predictive factors for restarting biological therapy in Crohn's disease

Factor	P-value	OR	95% CI
Dose intensification	0.024	12.96	1.39–120.5
Previous biological therapy	0.011	4.23	1.39–12.84
Smoking	0.053	2.74	0.99–7.59
Elevated CRP at start of	0.08	2.38	0.92–6.19
1-year biological therapy			
Corticosteroid use at start of	0.06	1.67	0.97–2.83
1-year biological therapy			
Female gender	0.15	0.49	0.19–1.28

THERE ARE KNOWN KNOWNS
THERE ARE THINGS THAT WE KNOW THAT WE KNOW, THERE ARE

KNOWN UNKNOWNS

Donald Rumsfeld

THAT IS TO SAY, THERE ARE
THINGS THAT WE NOW KNOW WE DON'T KNOW

BUT THERE ARE ALSO

UNKNOWN UNKNOWNS

THERE ARE THINGS

WE DO NOT KNOW WE DON'T KNOW

AND EACH YEAR WE DISCOVER

UNKNOWN
UNKNOWNS

Conclusions

- Always use combo- with IFX
- Combo- at the start of ADA may be of benefit
- Combo- doesn't increase the overall risk of infection or malignancy compared to mon
- But either biological or IMD mono- increases
 the risk to start with in more seriously affected
 patients
- Biosimilars must be assumed to need combo-

In the meantime.....

Inflammatory Bowel Diseases 2015

- CCIB Barcelona, Spain
- EACCME approved
- Register online at <u>www.ecco-ibd.eu</u>

Back up slides

T-Cell Non-Hodgkin's Lymphoma: REFURBISH

DESIGN

- Retrospective analysis; all lymphoma cases FDA AE Reporting System; all approved indications and for thiopurines for IBD pts
- Medline search additional reports
- Subtypes of T-cell NHL reported with anti-TNF-α agents compared to SEER data
- Risk with anti-TNF-α agents, thiopurines, or concomitant use; calculated using 5-ASA as a control drug

OBJECTIVE

 Evaluate risk T-cell NHL with anti-TNF-α agents in comparison to thiopurines in IBD

Table 1. Demographics of patients reported with T-cell non-Hodgkin's lymphomas due to TNF-alpha inhibitor exposure

	TNF- $lpha$ inhibitor alone	TNF-alpha inhibitor with immunomodulator ^b
Number of cases	32	68
Primary Indication for usage of TNF-alpha inhibitor	15 (RA), 6(AS), 5(CD), 4(Ps), 2 (UC)	31 (CD), 23 (RA), 7 (Ps), 7 (UC)
Mean age (Range) (yrs)	55.27 (20–83)	46.03 (12–86)
Median age (yrs)	56.5	46
Gender	Male: 23 (71.88%) Female: 9 (28.12%)	Male: 43 (63.24%) Female: 24 (35.29%) Unknown: 1 (1.47%)
Outcome	Alive: 13 (40.62%) Death: 7 (21.88%) Unknown: 12 (37.5%)	Alive: 24 (35.29%) Death: 34 (50.0%) Unknown: 10 (14.71%)

AS, ankylosing spondylitis; CD, Crohn's disease; Ps, Psoriasis; RA, rheumatoid arthritis; $TNF-\alpha$, tumor necrosis factor alpha; yrs, years.

^aReported to the Food and Drug Administration Adverse Event Reporting System and/or published literature on PUBMED.

T-Cell Non-Hodgkin's Lymphoma: (REFURBISH)

Table 2. Histological distribution of T-cell non-Hodgkin's lymphomas reported due to exposure to TNF- α inhibitors

Histology of T-cell ^b NHL	TNF-α inhibitor alone	TNF-α inhibitor in combination with immunomodulators ^c
T-cell precursor NHL	1 (AS)	2 (CD)
Mycosis fungoides/Sezary syndrome NHL ^d	6 (RA), 3 (AS), 1(Ps)	5 (RA), 2 (CD), 3 (Ps)
Primary cutaneous anaplastic large cell	_	1 (CD)
Peripheral T-cell lymphoma, NOS	1 (RA)	1 (UC), 2 (Ps)
Angioimmunoblastic T-cell lymphoma	_	1 (RA)
SPLTCLe	2 (RA), 1(AS)	1 (RA)
Anaplastic large-cell lymphoma, T or null cell'	1 (UC), 1(AS)	2 (CD), 2 (RA)
Hepatosplenic T-cell lymphoma ^g	1 (CD)	19 (CD), 4 (RA), 5 (UC), 1(Ps)
NK/T-cell lymphoma, nasal-type, aggressive NK leukemia	_	1 (CD), 1 (UC)
NHL, NOS, T cell ⁿ	6 (RA), 3 (Ps), 4 (CD), 1 (UC)	10 (RA), 4 (CD), 1 (Ps)

Table 4. Histology of T-cell NHL^a with TNF- α inhibitors (alone or in combination with immunomodulators^b) compared with T-cell NHL reported in SEER-17 registry

Histology of T-cell NHL	TNF-α inhibitor exposure (%)	SEER-17 registry (%)
T-cell precursor NHL	3	25.49
Mycosis fungoides/Sezary syndrome NHL	20	9.27
Primary cutaneous anaplastic large cell	1	0.60
Peripheral T-cell lymphoma, NOS	4	13.78
Angioimmunoblastic T-cell lymphoma	1	0.83
SPLTCL	4	0.09
Anaplastic large cell lymphoma, T or null cell, systemic	6	2.56
Hepatosplenic T-cell lymphoma	30	0.07
NK/T-cell lymphoma, nasal-type, aggressive NK leukemia	2	0.45
NHL, NOS, T cell	29	42.54

^aAzathioprine, 6-mercaptopurine, methotrexate, leflunomide, or cyclosporine. ^bCases subdivided into the total number of cases reported with each approved primary indication for TNF a inhibitor usage. ^cAzathioprine, 6-mercaptopurine, methotrexate, leflunomide, or cyclosporine. ^dFive cases of cutaneous lymphomas reported in literature, not in AERS. ^eOne case of SPLTCL reported in literature, not in AERS. ^fOne case of anaplastic large cell lymphoma reported in literature, not in AERS. ^gOne case of HSTCL reported in literature, not in AERS. ^hOne case of T cell NHL, NOS reported in literature, not in AERS.

T-Cell Non-Hodgkin's Lymphoma: REFURBISH

Table 3. New cases of hepatosplenic T-cell lymphoma with TNF- α inhibitor exposure

	Age	Gender	Diagnosis	Biology	Thiopurine	TCR	Treatment	Outcome
1.	19	M	UC	IFX (2.9 yrs)	AZA (1 yr)	NR	Splenectomy, Chemo	Died
2.	34	F	CD	IFX (3.56 yrs)	AZA (3.56 yrs)	γδ	Splenectomy, Chemo	Alive
3.	68	F	RA	IFX	AZA	NR	Hospice	Died

AZA, azathioprine; CD, Crohn's disease; Chemo, chemotherapy; F, female; $\gamma\delta$, gamma-delta; IFX, infliximab; M, male; NR, not recorded; RA, rheumatoid arthritis; TCR, T-cell receptor; TNF- α , tumor necrosis factor alpha; UC, ulcerative colitis; yrs, years.

Table 5. Test (T-cell NHL and HSTCL) and control events reported with TNF- α inhibitors (alone or in combination with thiopurines) in inflammatory bowel disease patients

T-cell NHL	Control events	P value	Confidence intervals
36	12	<0.0001	4.98–354.09
6	71	1.00	0.13-10.61
19	3	< 0.0001	8.32-945.38
1	14	_	_
HSTCL	Control events	P value	Confidence intervals
23	12	P<0.0001	2.99-993.04
1	71	P=1.00	0.02-15.70
17	3	P<0.0001	6.90-3045.2
0	14	_	_
	36 6 19 1 HSTCL 23 1	36 12 6 71 19 3 1 14 HSTCL Control events 23 12 1 71 17 3	36 12 <0.0001

HSTCL, hepatosplenic T-cell lymphoma; NHL, non-Hodgkin's lymphoma; TNF-α, tumor necrosis factor alpha.

Reported to the Food and Drug Administration Adverse Event Reporting System, not in published literature.

^aReported to the Food and Drug Administration Adverse Event Reporting System only.

All malignancies: Infliximab \pm Immunomodulators

Table 4. Summary of malignancies (excluding nonmelanoma skin cancers) by treatment both overall and during the main portions of all infliximab IBD studies and by immunomodulator use during the controlled portions of the pivotal phase 3 IBD trials

	Crohn's disease		Ulcerative colitis		All inflammatory bowel disease		
	Placebo ^c	Infliximab	Placeboc	Infliximab	Placebo ^c	Infliximab	
Overall among all infliximab IBD studies ^a							
Pts. treated	217	1,427	248	493	465	1,920	
Total/median pt-yrs of follow-up	124/0.5	1,229/1.0	210/0.6	832/1.0	334/0.6	2,061/1.0	
All malignancies							
No. (%) of pts. with malignancy	2 (0.9%)	6 (0.4%)	0 (0.0%)	5 (1.0%)	2 (0.4%)	11 (0.6%)	
P-value ^a	0.2	0.286		0.175		1	
Incidence per 100 pt-yrs	1.61	0.49	0	0.6	0.6	0.53	
95% CI°	(0.19, 5.82)	(0.18, 1.06)	(0.00, 1.43)	(0.20, 1.40)	(0.07, 2.16)	(0.27, 0.95)	
	No immuno- modulator	Immuno modulators	No immuno- modulator	Immuno modulator	No immuno- modulator	Immuno- modulator ^e	
Controlled portions of 5 pivotal IBD studies ^b							
Pts. treated	166	337	394	334	560	671	
All malignancies							
Total/median pt-yrs of follow-up	129/1.0	250/0.9	250/0.6	220/0.6	378/0.6	470/0.7	
No. (%) of pts. with malignancy	0 (0.0%)	2 (0.6%)	1 (0.3%)	1 (0.3%)	1 (0.2%)	3 (0.5%)	
P-value		1	1		0.631		
Incidence per 100 pt-yrs	0	0.8	0.4	0.45	0.26	0.64	
95% CI	(0.00, 2.33)	(0.10, 2.89)	(0.01, 2.23)	(0.01, 2.53)	(0.01, 1.47)	(0.13, 1.87)	
Expected no. of pts.1	0.43	0.71	1.22	0.88	1.65	1.6	
SIR	0	2.8	0.82	1.13	0.61	1.88	
SIR 95% CI	(0.00, 6.92)	(0.34, 10.11)	(0.02, 4.58)	(0.03, 6.30)	(0.02, 3.38)	(0.39, 5.48)	

Lichtenstein GR, et al. Am J Gastroenterol. 2012;107:1051-1063

All malignancies: Adalimumab ± Immunomodulators

ADA	A monotherapy ^a	onotherapy ^a ADA + thiopurine ^b ADA + meth			notrexate ^b			
Malignancy	N of patients	N of events	Malignancy	N of patients	N of events	Malignancy	N of patient	N of events
Malignancies other	than NMSC							
Anal cancer	1	1	Acute myeloid leukemia	1	1	Bronchial carcinoma	1	1
Breast cancer (in situ)	1	1	Bladder cancer	1	1	Lymphoma	1	1
Colon cancer	1	1	Breast cancer	1	1	Renal cell carcinoma	1	1
Langerhans cell histiocytosis	1	1	Glioblastoma multiforme	1	1	Thyroid cancer	1	1
Thyroid cancer	1	1	Hepatic neoplasm malignant	1	3			
Vaginal cancer (recurrent)	1	1	Lung adenocarcinoma ^c	1	1			
			Non-Hodgkin lymphoma	1	1			
			Ovarian cancer	1	1			
			Prostate cancer	1	1			
			Vulval cancer	1	1			
NMSC								
Basal cell carcinoma	3	4	Basal cell carcinoma	6	7	Basal cell carcinoma	1	1
Skin cancer ^d	2	2	Bowen disease ^c	1	1	Squamous cell carcinoma	1	1
			Squamous cell carcinoma	4	6			

ADA, adalimumab.

^dNot otherwise specified.

^aIn the monotherapy group 1 patient had both basal cell carcinoma and skin cancer reported.

^bIn the ADA + thiopurine and the ADA + methotrexate groups, 1 patient each had both squamous cell carcinoma and basal cell carcinoma reported.

^cThe patient with lung adenocarcinoma also had Bowen disease.